Силикатизация грунтов своими руками

Силикатизация грунтов — один из способов улучшить их прочность и повысить надежность

Во многих сферах, но больше всего в строительстве, очень важны и нужны надежные прочные грунты. Это гарантия, что любое сооружение, начиная от частного дома и заканчивая крупным производственным цехом, будет сохранять свою целостность многие десятилетия. К сожалению, не всегда место, отведенное под строительство, является стабильным. Нахождение близко к поверхности подземных вод заболачивает грунт, делает его непригодным для возведения даже небольших построек.

Методы закрепления грунта

Существует несколько способов стабилизировать грунт, закрепить его, уменьшить сжимаемость и повысить прочность. Один из них — увеличить сцепление между частицами, не нарушая структуру почвы. Самые популярные методы:

  1. Глинизация почвы.
  2. Силикатизация грунтов.
  3. Цементация.
  4. Термизация.
  5. Электрохимизация.

Выбор конкретного метода зависит от типа почвы. Чаще всего для укрепления грунта используется именно силикатизация как самый простой вариант решения столь серьезного вопроса. Что это за способ, в чем его преимущества и особенности? Об этом — далее.

Силикатизация грунтов

Важная деталь: не подлежат силикатизации почвы, пропитанные нефтепродуктами или смолами.

С помощью данного метода можно укрепить как водонасыщенные почвы, так и сухие пески, микропористые просадочные и другие виды насыпных грунтов. Технология силикатизации грунтов очень проста: чтобы сделать почву более надежной и прочной, в нее нагнетают определенное вещество. Оно цементирует в грунте поры, благодаря чему связь между частицами повышается и почва становится намного прочнее.

На песчаных почвах и лессах применяется обычно однорастворный метод. Если песчаные грунты насыщены влагой или являются плывунами, изменить их состояние можно только при помощи двухрастворного способа силикатизации. Закрепить грунты силикатизацией можно только в том случае, если основание имеет коэффициент фильтрации 3-78 м/сутки.

В чем особенность? Особенность силикатизации грунтов в том, что, проникая в грунт, вещества обволакивают мелкие компоненты, склеивая и связывая их. Чтобы выполнить весь процесс, в грунте готовят отверстия или бурят скважины. После этого подготавливают в нужном объеме раствор и через инъекционные насосы закачивают его в почву.

Однорастворная силикатизация

На пылеватых песках и других видах нестабильных почв применяют именно однорастворный метод силикатизации грунтов. Для этого в почву нужного участка земли подают раствор жидкого стекла, смешанного с серной или фосфорной кислотой.

На заметку: ранее еще одним компонентом мог служить сернокислый аммоний. Но он был запрещен новыми правилами экологических служб.

После однорастворной силикатизации почва становится более стабильной, но ее прочности недостаточно для возведения крупных сооружений.

В качестве стабилизирующего вещества может служить и одно жидкое стекло. Такой вариант применяют на лессовых посадочных грунтах. Между жидким стеклом и водорастворимыми солями грунта происходит реакция, в результате чего образуется гель.

Двухрастворный способ

Двухрастворная силикатизация грунтов отличается от предыдущего варианта тем, что выбранные компоненты нагнетают в почву не одновременно, а поочередно: сначала жидкое стекло, а затем хлористый кальций. После химической реакции образовывается новое вещество. Это – гель кремниевой кислоты. Его главное качество – интенсивное затвердевание, которое осуществляется на протяжении первых суток. Далее скорость затвердевания значительно уменьшается, и оно заканчивается через 80-90 дней. За это время прочность почвы значительно увеличивается и достигает показателя не менее 4,5 МПа.

Главные особенности двухрастворного способа

Силикатизация грунтов данным методом имеет свои достоинства и недостатки. Неоспоримые преимущества:

  1. Возможность закрепить грунт на достаточно большом радиусе от скважины.
  2. Отсутствие необходимости использовать специальную технику, сложное оборудование.
  3. Возможность существенно улучшить качество грунта.

К сожалению, имеют место и недостатки, но их немного:

  1. Дороговизна – химические компоненты стоят не дешево.
  2. Процесс затвердевания происходит достаточно долго.

Когда рекомендована силикатизация?

Закрепление грунтов силикатизацией рекомендуется в следующих случаях:

  1. При строительстве автотрасс.
  2. При возведении производственных, складских и офисных помещений, частных домов, инфраструктурных и других объектов.
  3. При прокладывании железнодорожных путей сообщения.
  4. При строительстве гидротехнических сооружений.
  5. Когда необходимо уплотнить лессовые почвы.
  6. Для укрепления выработанных грунтов и т.д.

Применение двухрастворного способа гарантирует прочность почвы, благодаря чему здания и другие сооружения не будут подвергаться усадкам, трескаться или крениться.

Что дает силикатизация почвы?

Силикатизация грунтов позволяет:

  1. Увеличить несущую способность почвы под основаниями фундаментов сооружений и зданий.
  2. Уплотнить разуплотненные почвы, усилить ее во время проведения ремонта фундамента под зданиями и сооружениями.
  3. Уплотнить грунт основания в тех случаях, когда планируется прокладка инженерных коммуникаций или их ремонт. Рекомендуется проводить данную процедуру на разуплотненных грунтах и при разработке котлованов.
  4. Устранить или предотвратить непрогнозируемую усадку оснований на разуплотненных грунтах.
  5. Укрепить откосы котлованов.
  6. Устроить противофильтрационный завес.
  7. Устранить крен аварийного здания или сооружения.

§ 28. Закрепление грунтов

Закрепление грунтов заключается в усилении связей между их частицами способами цементации, битумизации, силикатизации, смолизации, воздействием электрического тока, обжигом и т. д. на глубину до 15 м.

Для повышения несущей способности грунтов в основании фундаментов, а также для прекращения или уменьшения фильтрации воды под гидротехническими напорными сооружениями применяют цементацию. Сущность этого способа заключается в нагнетании в поры укрепляемого грунта цементного раствора, при отвердевании которого значительно увеличивается прочность и водонепроницаемость основания.

Способ цементации применим для закрепления грунтов, размеры пор которых обеспечивают свободное проникание частиц цемента. Наибольший эффект получается при цементации крупнообломочных грунтов, крупных и средней крупности песков с коэффициентом фильтрации от 80 до 200 м/сут. Цементация трудноосуществима в мелких песках и совсем непригодна для укрепления илистых, супесчаных, суглинистых и глинистых грунтов. Трещиноватые скальные грунты можно цементировать только при ширине трещин в них более 0,1 мм.

Для цементации применяют цементные или цементно-песчаные растворы состава от 1:1 до 1:3. Раствор нагнетают под давлением 0,3—1 МПа растворонасосами или пневмонагнетателями через предварительно заглубленные трубки-инъекторы диаметром 33—60 мм, имеющие в нижней части отверстия диаметром 4—6 мм. Радиус действия инъекторов ориентировочно принимают для трещиноватых скальных грунтов 1,2—1,5 м, для крупнообломочных грунтов 0,75—1 м, для крупных песков 0,5—0,75 м, для песков средней крупности 0,3—0,5 м.

Расход раствора составляет 20—40% объема закрепляемого грунта. Упрочнение грунта наступает после схватывания цемента. Закрепленный песчаный грунт вблизи инъектора на 28-е сут имеет предел прочности на сжатие 2—3 МПа. С изменением радиуса закрепления от 0,4 до 1,2 м предел прочности на сжатие зацементированного песка в крайних слоях меняется от 2 до 0,9 МПа.

Закрепление грунтов битумом называют битумизацией. Ее применяют для укрепления песков и сильно трещиноватых скальных грунтов. Битумизацию производят нагнетанием в грунт расплавленного битума или холодной битумной эмульсии. Первый способ применим для закрепления сильно трещиноватых скальных грунтов, так как грунт с мелкими порами почти непроницаем для вязкого битума. Разогретый до 200—220 °С битум нагнетают в грунт инъектором под давлением 2,5—3 МПа. Холодная битумная эмульсия по сравнению с разогретым битумом обладает большей способностью к прониканию в грунт, что позволяет использовать ее для закрепления песков. Для этого приготовляют битумную эмульсию, состоящую из 60% битума, расщепленного в воде с помощью эмульгатора на мельчайшие взвешенные частицы, и 40% воды. Полученную эмульсию нагнетают в грунт. Заполняя поры, битумная эмульсия связывает и закрепляет грунт.

Так как суспензия из взвешенных в воде частиц цемента не может проникнуть в грунты с мелкими порами, для закрепления таких грунтов применяют силикатизацию. Известны два способа силикатизации грунтов—двухрастворный и однорастворный.

Сущность двухрастворной силикатизации заключается в образовании связывающего частицы грунта вещества—геля кремниевой кислоты—в результате реакции между растворами силиката натрия (жидкого стекла) и хлористого кальция. Эта реакция подобна процессу образования песчаников в природных условиях, но происходит значительно быстрее. Наиболее интенсивно реакция протекает в течение первых двух часов нагнетания раствора в грунт, а затем замедляется. Через 10 сут прочность закрепленного грунта достигает 70—80% той, которая бывает после завершения процесса—примерно через 90 сут. Двухрастворную силикатизацию применяют для укрепления крупных и средней крупности песков с коэффициентом фильтрации от 2 до 80 м/сут. Радиус закрепления таких песков в зависимости от значения коэффициента фильтрации изменяется от 0,3 до 1 м, а предел прочности закрепленных грунтов на сжатие через 28 сут составляет 1,5—5 МПа.

Читайте также  Приспособления для копки картофеля своими руками

Однорастворную силикатизацию используют для закрепления мелких песков и плывунов с коэффициентом фильтрации 0,3—5 м/сут. Радиус закрепления таких грунтов 0,3—1 м, а предел прочности на сжатие закрепленных грунтов 0,4—0,5 МПа. Для упрочнения грунтов используют один раствор, состоящий из жидкого стекла и фосфорной кислоты.

Способ закрепления грунтов, представляющий собой дальнейшее развитие метода однорастворной силикатизации и основанный на использовании вместо жидкого стекла раствора синтетической смолы, а взамен фосфорной кислоты соляной, называют смолизацией грунтов. В настоящее время разработана технология закрепления карбамидной смолой песчаных грунтов с коэффициентом фильтрации 0,3—5 м/сут при содержании глинистых частиц не более 2%. Для закрепления грунтов используют водный раствор карбамидной смолы, в который непосредственно перед нагнетанием в грунт добавляют раствор соляной кислоты. Смесь подают в укрепляемый грунт, используя оборудование, применяемое для силикатизации. Процесс отверждения грунтов начинается через 1,5—4 ч после введения раствора соляной кислоты, что необходимо учитывать при производстве работ. Радиус закрепления грунта в зависимости от коэффициента фильтрации изменяется от 0,4 до 0,8 м. Предел прочности укрепленного грунта на одноосное сжатие 1—5 МПа. Вследствие высокой стоимости синтетических смол смолизацию грунтов пока применяют крайне редко, однако это обстоятельство следует рассматривать как временное явление.

Способ электрозакрепления грунтов основан на том, что под воздействием постоянного электрического тока в грунтах происходит движение воды к отрицательному электроду (электроосмос) и одновременно с этим перемещение коллоидальных взвешенных в воде частиц грунта к положительному электроду (электрофорез). Кроме того, наблюдаются явления электролиза и другие сложные химические процессы, приводящие к образованию кристаллизационных связей и продолжающиеся в течение нескольких лет. Так, на одной из строек было установлено, что предел прочности грунта на сжатие спустя год после прекращения процесса электрозакрепления увеличился почти в 2 раза.


Рис. 5.2. Схема применения термического способа укрепления просадочных грунтов 1 — просадочный грунт; 2 — непросадочный грунт; 3 — зона укрепленного грунта; 4 — скважина; 5 — затвор с камерой сгорания; 6 — форсунка; 7 — трубка для подачи горючего; 8 — трубка для подачи сжатого воздуха

Для обезвоживания грунта в него погружают электроды на расстоянии 0,6—1,5 м один от другого. В качестве положительных электродов используют стальные стержни любого профиля, а в качестве отрицательных — трубы с отверстиями, расположенными в зоне удаления воды.

Наблюдениями установлено, что под воздействием электрического тока коэффициент фильтрации песков увеличивается в процессе осушения в 10—20 раз, а глинистых и илистых грунтов—до 100 ра. Это обстоятельство в значительной степени способствует успеху способа электрохимического закрепления грунтов, сущность которого заключается в том, что на место удаляемой через отрицательный электрод воды в освобождающиеся поры грунта подается из трубчатого положительного электрода цементирующий раствор жидкого стекла, хлористого кальция или другого вещества.

Сущность термического способа закрепления грунтов заключается в том, что при обжиге маловлажных просадочных лессовых и пористых суглинистых грунтов в них происходят необратимые процессы превращения водорастворимых связей между частицами грунта в водостойкие, в результате чего существенно повышается несущая способность грунтов и устраняется их просадочность. Обжиг грунтов осуществляется нагнетанием в скважины горячего воздуха температурой 600—800 °С или же сжиганием топлива (солярового масла, нефти, газа и т. п.) непосредственно в скважине с созданием температуры 800—1000 °С (рис. 5.2). Последний способ более экономичен и требует меньше оборудования. В результате обжига предел прочности грунта на сжатие повышается до 1,0—1,2 МПа. Обожженный грунт становится неразмокаемым и морозоустойчивым, полностью утрачивая просадочные свойства.
1. Для чего применяют искусственное укрепление грунтов?

2. В чем состоят различные способы уплотнения грунтов?
3. Как производится закрепление слабых грунтов?

Причины и методы силикатизация грунтов

Долговечность любого строительства находится в прямой зависимости от качественных характеристик и несущей способности грунта. Если здание предстоит строить на насыпных, водонасыщенных, просадочных грунтах, их подвергают стабилизации (упрочнению).

Один из эффективных способов, используемых компанией «Стройметмашсервис» для укрепления почвы без нарушения ее структуры – силикатизация грунта. Метод, подробно о котором можно узнать на странице сайта https://smms.ltd/uslugi/svajnye-raboty/silikatizaciya-gruntov/, предусматривает нагнетание гелеобразных химических составов, которые заполняют пустоты (или вытесняют излишнюю влагу). После затвердевания гель образует плотную структуру с улучшенными несущими качествами и высоким сопротивлением к проникновению влаги.

Направления применения

На практике силикатизация грунтов целесообразна при необходимости:

  • прокладки железнодорожных путей, автомобильных трасс, инженерных коммуникаций в грунтах, требующих уплотнения;
  • строительства или ремонта фундаментов зданий и сооружений на разуплотненных почвах;
  • рытья котлованов и укрепления откосов;
  • устройства противофильтрационных сооружений;
  • производства работ по устранению и предупреждению аварийных ситуаций при появлении трещин в стенах и крена эксплуатируемых зданий.

Особенности технологии

Укрепление структуры грунта обеспечивается путем закачивания раствора жидкого стекла (силиката натрия) с необходимыми химическими добавками в предварительно подготовленные каналы и скважины. Для этого используются инъекторы (стальные трубы с перфорацией) D 25-50 мм, через которые под давлением 0,6-1 МПа рабочий раствор закачивается в грунт (под фундамент). Гель, образующийся при химической реакции, полностью затвердевает в течение определенного периода времени (до 80-90 суток), скрепляя мелкие частицы грунта вокруг инъектора (диапазоне 0,3-1 м) в прочную, плотную структуру.

Способы силикатизации

Для укрепления грунтов компания «Стройметмашсервис» https://smms.ltd/ использует наиболее эффективные методы силикатизации:

  • однорастворный – для грунтов с коэффициентом фильтрации (Кф) 0,5-2 м/сутки;
  • двухрастворный – для грунтов с Кф 2-80 м/сутки.

Однорастворный способ инъекции предусматривает применение однокомпонентного раствора силиката натрия, в некоторых случаях – с добавлением серной, кремнефтористой или фосфорной кислоты. Процесс оказывает стабилизирующее воздействие на грунт, достаточное для строительства небольших сооружений.

При двухрастворном способе используется последовательное введение в почву растворов жидкого стекла и хлористого кальция, обеспечивая прочность полученного грунта в пределах 0,5-5,5 МПа.

В последние годы распространение получила технология Uretek deep injection, в основе которого лежит применение геополимерных составов, препятствующих проседанию грунта, что особенно важно при строительстве многоэтажных зданий и гидротехнических объектов.

Преимущества технологии

Метод силикатизации существенно расширяет возможности строительства на территориях с песчаными и водонасыщенными грунтами, обеспечивая многократное увеличение их несущей способности. К плюсам технологии можно также отнести:

  • отсутствие сложных механизмов в технологическом процессе уплотнения грунта силикатными смесями;
  • быстроту внесения укрепляющих компонентов;
  • повышенную прочность обработанных грунтов в сравнении с результатами, полученными при использовании других технологий.

Несмотря на относительно высокую стоимость реагентов, используемых при силикатизации, и длительность периода затвердевания смеси, метод широко применяется на практике и незаменим как при возведении зданий на слабых грунтах, так и при работах по предотвращению усадки фундаментов эксплуатируемых объектов.

Справочник: Закрепление грунтов

Часто строители сталкивается с необходимостью возведения объектов в местах, где производство работ невозможно без закрепления грунта вблизи уже существующих сооружений, а также при необходимости устройства фундаментов на пористых, сыпучих и малопрочных грунтах.

В процессе инъецирования реагентов в грунт и их дальнейшего твердения, между частицами грунта возникают прочные структурные связи, что приводит к снижению показателей водопроницаемости и сжимаемости, а так же к увеличению прочности грунтов.

Закрепление грунтов непосредственно связано с преобразованием свойств естественно залегающих грунтов физико-химическими способами. По способу закрепления принято выделять несколько методов, которые кардинально отличаются друг от друга.

Цементация грунтов

Данный метод применяют для упрочнения насыпных грунтов, песков и галечниковых отложений при коэффициенте фильтрации упрочняемых грунтов более 80 м/сут., также для заполнения карстовых пустот и закрепления трещиноватых скальных грунтов.Технология метода заключается в следующем. В пробуренные скважины опускают инъекторы, представляющие собой трубы диаметром от 25 до 100 мм перфорированные в нижней части. Данный метод также позволяет использовать забивные инъекторы. После погружения инъектора в скважину или грунт в него под давлением подается вода, что позволяет промыть инъектор и скважину. Затем вода замещается цементным раствором, который проникает в грунт и цементирует его. Цементный раствор состоит из цемента и воды в водоцементном отношении от 0,4 до 1,0.

Читайте также  Как сделать садовый опрыскиватель своими руками?

При цементации пустот и закреплении трещиноватых скал применяют раствор с добавлением песка и небольшим водоцементным отношением. В процессе опытных работ устанавливают все показатели: радиус закрепления грунта, давление нагнетания и расход цементного раствора, прочность зацементированных грунтов.

Силикатизация грунтов

Рассмотрим двухрастворный способ силикатизации. Данный метод применяют для химического закрепления песков с коэффициентом фильтрации от 1 до 80 м/сут, макропористых просадочных грунтов и некоторых видов насыпных.

Суть метода заключается в следующим. В грунт погружаются инъекторы , представляющие собой трубы диаметром 38 мм перфорированные в нижней части. Инъекторы погружаются попарно на расстоянии 25 см друг от друга. Через инъекторы под давлением до 1,5 МПа в грунт закачивается раствор силиката натрия. Через соседнюю трубу закачивается раствор хлористого кальция. Допускается нагнетания растворов поочередно при введении и извлечении инъекторов. Радиус закрепления грунта составляет до 1 метра. На полное твердение реагентов требуется 28 дней, после чего закрепленный грунт приобретает прочность на сжатие до 5 МПа (одноосное). При закреплении мелких песков и плывунов в грунт нагнетается гелеобразующий раствор, состоящий из смеси растворов крепителя и отвердителя. Изменяя состав отвердителя, можно регулировать время гелеобразования, достигая значений от нескольких минут до нескольких часов. В малопроницаемых грунтах для обеспечения необходимого радиуса закрепления применяют раствор с большим временем гелеобразования. Также силикатизация эффективна для закрепления макропористых лессовых грунтов. Интересной особенностью силикатизации лессов является наличие в составе таких грунтов солей, которые исполняют роль отвердителя раствора силиката натрия. Что позволяет проводить закрепление грунтов классическим однорастворным методом. Прочность закрепления массива может достигать 2 МПа при этом оно водоустойчиво и не имеет просадочных свойств.

Также применяют газовую силикатизацию песчаных и макропористых лессовых грунтов при которой в качестве отвердителя используют углекислый газ (диоксид углерода). Суть метода заключается в следующем. В грунт нагнетается углекислый газ для его активации, затем раствор силиката натрия и вторично углекислый газ. Прочность закрепления таким способом составляет до 1,5 МПа. Для сплошного закрепления грунта инъекторы располагают в шахматном порядке. Расстояние между рядим определяют по формуле a=1,5r, а расстояние между инъекторами в ряду – a=1,73r, где r – радиус закрепления.

Смолизация грунтов

Данный метод применяют для закрепления водонасыщенных и сухих песков с коэффициентом фильтрации до 25 м/сут. Суть метода заключается во введении в грунт органических соединений типа карбамидных, фенолформальдегидных и других синтетических смол в смеси с отвердителями – кислыми солями и кислотами. После взаимодействия с отвердителями смола полимеризуется. Время гелеобразования составляет от 1,5 до 2,5 часов при времени упрочнения до 2 суток. Прочность закрепления песка карбамидной смолой колеблется в пределах от 1 до 5 МПа на одноосное сжатие. Технология закрепление грунтов смолами аналогична технологии силикатизации грунтов. Радиус закрепленной области составляет от 0,3 до 1 метра.

Электрохимическое закрепление грунтов

Данный метод применяют для закрепления водонасыщенных пылевато-глинистых грунтов. Суть метода заключается в следующем. В грунт через аноды подают растворы солей многовалентных металлов на основе воды, которые реагируя с глинистым грунтом, коагулируют глинистые частицы. Создаются глинистые агрегаты, сцементированные между собой гелями солей алюминия и железа. Данный метод позволяет значительно повысить прочность грунтов, также снизить способность грунта к набуханию. При электрохимическом закреплении грунтов напряжение тока составляет до 100 В, а расход энергии от 60 до 100 кВт/ч на один кубический метод закрепляемого грунта.

Глинизация и битумизация

Данный метод применяют для уменьшения водопроницаемости песков. Суть метода заключается в следующем. Через инъекторы, погруженные грунт нагнетают водную суспензию бентонитовой глины с содержанием монтмориллонита не менее 60-70%. Водопроницаемость грунта резко снижается за счет выпадения в осадок глинистых частиц, которые заполняют поры песка. Метод битумизации применяют для уменьшения водопроницаемости трещеноватых скальных пород. Суть метода заключается в нагнетании через скважины битумных эмульсий или расплавленного битума в трещеноватый массив. При этом происходит заполнение пустот массива что делает его практически водонепроницаемым.

Термическое закрепление грунтов

Данный метод наиболее часто применяют для устранения просадочных свойств лессовых макропористых грунтов, при этом глубина закрепляемой толщи достигает 20 метров. Скважины, пробуренные диаметром от 100 до 200 мм, закрывают специальные керамические затворы, в которых оборудованы камеры сгорания. К камере подают топливо и воздух под давлением. Температура газов должна быть не ниже 300°С, иначе не происходит ликвидация просадочности грунтов.

Также температура не должна превышать 850°С , если температура выше то стенки скважины оплавятся и станут газонепроницаемыми. Для поддержания температуры горения на уровне 750…850°С расход воздуха на один килограмм горючего составляет от 30 до 40 кубических метров. При указанном количестве воздуха количество сгораемого горючего на 1 метр длины не должно превышать 0,85 кг/ч. Термическая обработка производится непрерывно в течении нескольких суток.

В результате получается упрочненный конусообразный массив грунта диаметром от 1,5 до 2,5 м поверху, а на глубине 8 – 10 м диаметр составляет от 0,3 до 1 м, образуется коническая свая с прочностью до 10 МПа. Также применяется технология, которая позволяет сжигать топливо на любой глубине скважины. Это позволяет создавать термосваи постоянного сечения, с уширением вверху или внизу. При закреплении грунта термосваями рекомендуют проведение испытаний статической нагрузкой.

Если статья оказалась полезной, ознакомьтесь с нашими услугами

Посмотрите другие статьи нашего справочника

Силикатизация грунтов своими руками

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

КАПИТАЛЬНЫЙ РЕМОНТ ЗДАНИЙ

УКРЕПЛЕНИЕ ГРУНТОВ ПОД ПОДОШВОЙ ФУНДАМЕНТА МЕТОДОМ СИЛИКАТИЗАЦИИ

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Типовая технологическая карта (именуемая далее по тексту ТТК) — комплексный организационно-технологический документ, разработанный на основе методов научной организации труда для выполнения технологического процесса и определяющий состав производственных операций с применением наиболее современных средств механизации и способов выполнения работ по определённо заданной технологии. ТТК предназначена для использования при разработке Проектов организации капитального ремонта, Проектов производства ремонтно-строительных работ и другой организационно-технологической документации строительными подразделениями. ТТК является составной частью Проектов производства работ (далее по тексту — ППР) и используется в составе ППР согласно МДС 12-81.2007.

1.2. В настоящей ТТК приведены указания по организации и технологии производства работ по искусственному закреплению грунтов методом силикатизации.

Определён состав производственных операций, требования к контролю качества и приемке работ, плановая трудоемкость работ, трудовые, производственные и материальные ресурсы, мероприятия по промышленной безопасности и охране труда.

1.3. Нормативной базой для разработки технологической карты являются:

— строительные нормы и правила (СНиП, СН, СП);

— заводские инструкции и технические условия (ТУ);

— нормы и расценки на строительно-монтажные работы (ГЭСН-2001 ЕНиР);

— производственные нормы расхода материалов (НПРМ);

— местные прогрессивные нормы и расценки, нормы затрат труда, нормы расхода материально-технических ресурсов.

1.4. Цель создания ТТК — описание решений по организации и технологии производства строительно-монтажных работ по искусственному закреплению грунтов методом силикатизации, с целью обеспечения их высокого качества, а также:

— снижение себестоимости работ;

— сокращение продолжительности строительства;

— обеспечение безопасности выполняемых работ;

— организации ритмичной работы;

— рациональное использование трудовых ресурсов и машин;

— унификации технологических решений.

1.5. На базе ТТК разрабатываются Рабочие технологические карты (РТК) на выполнение отдельных видов работ (СНиП 3.01.01-85* «Организация строительного производства») по искусственному закреплению грунтов методом силикатизации.

Конструктивные особенности их выполнения решаются в каждом конкретном случае Рабочим проектом. Состав и степень детализации материалов, разрабатываемых в РТК, устанавливаются соответствующей подрядной строительной организацией, исходя из специфики и объема выполняемых работ.

РТК рассматриваются и утверждаются в составе ППР руководителем Генеральной подрядной строительной организации.

1.6. ТТК можно привязать к конкретному объекту и условиям строительства. Этот процесс состоит в уточнении объемов работ, средств механизации, потребности в трудовых и материально-технических ресурсах.

Порядок привязки ТТК к местным условиям:

Читайте также  Какое масло лучше заливать в бензопилу?

— рассмотрение материалов карты и выбор искомого варианта;

— проверка соответствия исходных данных (объемов работ, норм времени, марок и типов механизмов, применяемых строительных материалов, состава звена рабочих) принятому варианту;

— корректировка объемов работ в соответствии с избранным вариантом производства работ и конкретным проектным решением;

— пересчёт калькуляции, технико-экономических показателей, потребности в машинах, механизмах, инструментах и материально-технических ресурсах применительно к избранному варианту;

— оформление графической части с конкретной привязкой механизмов, оборудования и приспособлений в соответствии с их фактическими габаритами.

1.7. Типовая технологическая карта разработана для инженерно-технических работников (производителей работ, мастеров, бригадиров) и рабочих, выполняющих работы в III-й температурной зоне, с целью ознакомления (обучения) их с правилами производства работ по искусственному закреплению грунтов методом силикатизации, с применением наиболее современных средств механизации, прогрессивных конструкций и способов выполнения работ.

Технологическая карта разработана на следующие объёмы работ:

— закрепляемый грунт — 150,0 м .

II. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Технологическая карта разработана на комплекс работ по искусственному закреплению грунтов методом силикатизации.

2.2. Работы по искусственному закреплению грунтов методом силикатизации, выполняются механизированным отрядом в одну смену, продолжительность рабочего времени в течение смены составляет:

час.

2.3. В состав работ, последовательно выполняемых при искусственном закреплении грунтов методом силикатизации, входят следующие рабочие процессы и технологические операции:

— геодезическая разбивка местоположения забивки инъекторов;

— забивка инъекторов в грунт;

— подключение шлангов для нагнетания раствора;

— нагнетание раствора в грунт;

— ликвидация использованных скважин.

2.4. Технологической картой предусмотрено выполнение работ комплексным механизированным звеном в составе: передвижной компрессор фирмы Atlas Copco XAS 97 Dd (подача сжатого воздуха 5,3 м /час, =0,7 МПа, m=940 кг); отбойный молоток Atlas Copco TEX 09 PS 8461021102 (масса m=9,6 кг, =0,5 МПа, частота ударов 1800 уд/мин); электрическая шлифовальная машинка PWS 750-125 фирмы Bosch (Р=1,9 кг; N=750 Вт); ручная инжекторная газовая горелка Р2А-01 с внутренними и наружными мундштуками, ключом, уплотнительными кольцами, газовыми баллонами и редукторами; трубонарезная головка REMS Ева; дизельный растворонасос Putzmeister M 740 (производительность до 5 м /час, =7 бар; общая масса m=1450 кг; габаритные размеры Д Ш В, 4500 1450 1200 мм).

Рис.1. Инжекторная газовая горелка Р2А-01

а — горелка; б — инжекторное устройство; 1 — мундштук; 2 — ниппель мундштука; 3 — наконечник; 4 — трубчатый мундштук; 5 — смесительная камера; 6 — резиновое кольцо; 7 — инжектор; 8 — накидная гайка; 9 — ацетиленовый вентиль; 10 — штуцер; 11 — накидная гайка; 12 — шланговый ниппель; 13 — трубка; 14 — рукоять; 15 — сальниковая набивка; 16 — кислородный вентиль.

Рис.2. Газовые баллоны и редукторы

а — кислородный баллон, объёмом 6 м ; б — ацетиленовый баллон, объёмом 5,32 м ; г — кислородный редуктор; д — ацетиленовый редуктор.

Рис.3. Компрессор Atlas Copco XAS 97 Dd

Рис.4. Молоток Atlas Copco TEX 09 PS

Рис.5. Растворонасос Putzmeister M 740

Рис.6. Трубонарезная головка REMS Ева

Рис.7. Электрошлифмашинка PWS 750-125

2.5. Для искусственного закрепления грунтов методом силикатизации применяют следующие строительные материалы: раствор силиката натрия соответствующий техническим требованиям ГОСТ 50418-92; инъекторы из труб стальных цельнотянутых гладких и перфорированных 32 мм, толщина стенки t=5,0 мм, =1,5 м.

2.6. Работы по искусственному закреплению грунтов методом силикатизации следует выполнять, руководствуясь требованиями следующих нормативных документов:

Инъекционное укрепление грунтов и фундаментов

Инъекцию цементного раствора в грунты в качестве укрепления пород, склонных к образованию трещин, впервые стал применять во Франции Бериньи (Berigny) в 1802 году. Инъекционное укрепление грунтов до сих остается актуальным как при возведении новых зданий, так и существующих (инъектирование грунта под фундаментом).

Укрепление грунта это

Применяя данный метод с целью укрепления и стабилизации грунтов важно учитывать уровень пористости основания и коэффициент фильтрации.

Классифицирование инъекционного метода укрепление грунтов

  1. по виду инъектора:
  • шнек – инъектор;
  • однотампонный или многотампонный инъектор;
  • инъектор забивной;
  • инъектор с резцом;
  • инъектор устанавливаемый в предварительно пробуренные скважины;
  1. по разновидности используемого раствора:
  • силикатизация, она бывает одно и двухрастворная, а так же газовая;
  • цементация, т.е. усиление грунта происходит при помощи цементных растворов;
  1. по технологии нагнетания раствора:
  • заполнение полостей раствором, с последующей опрессовкой;
  • посредством направленного гидроразрыва грунта;
  • пропитка методом плавного повышения давления (задается определенный режим давление и расхода материала, без разрыва пласта).

С целью создания большого пласта из укрепленного грунта используют различные методы, исходя из назначения грунта и его условий:

  • термический, укрепление грунта происходит путем электронагрева грунта или закачиванием в скважину газов при высокой температуре;
  • инъекционный, нагнетаются химические в скважины или цементосодержащие растворы в грунты с помощью инъекторов (смолизация, силикатизация и цементация);
  • буросмесительный, смешивания основания грунта с цементным раствором или цементом в скважинах.

Инъектирование грунтов химическим закреплением

Данный метод стабилизации грунтов инъектированием был разработан в 1931 году советским ученым в области фундаментостроения Б.А. Ржаницыным.

Борис Александрович является основоположником советской научной школы химического укрепления грунта. Им был разработан двухсторонний способ силикатизация песков повышенной влажности.

Этот метод усиления грунта отлично применялся при силикатизации лессовых грунтов, дающих просадку. В этом случае роль второго реагента выполняет сам грунт.

Особенно хорошо силикатизация проявила себя при инъекции просадочных пород грунтов. Сам процесс усиления грунтов инъекцированием по системе Б.А. Ржаницына основан на внедрении силикатного раствора с низким уровнем вязкости в грунт, в результате чего производит быстрое выделение известково- кремнезистых новообразований. Что и обеспечивает усиление структуры грунта.

Улучшению строительных свойств просадочных грунтовых пород будет способствовать однорастворная силикатизация. Инъецирование грунта, в этом случае, способствовало тому, что грунтовые породы теряли свои просадочные свойства, а показатели прочности, такие как временное закрепление одноосному сжатию, модуль деформации, угол внутреннего трения, повышаются.

Усиление фундамента методом инъектирования

И, что немаловажно, при увлажнении характеристики прочности грунта уменьшались незначительно. Такой метод силикатизации отлично используется при возведении зданий «с нуля».

Однорастворный силикатный способ усиления грунтов и фундамента предполагает применение раствора силиката натрия, удельный вес которого равен 1,05 – 1,17. Сам лёссовый грунт, в этом случае, заменяет отвердитель.

В процессе взаимодействия силикатного раствора с карбонатами и поглощающим комплексом лессового грунта в его пустотах и порах образуется твердая субстанция из гидроокиси кальция и адсорбированная на нем кремнекислота SiO2. Такое соединение обеспечивает укрепленному грунту водонепроницаемости и придает прочности около 6-20 кг/см2.

Использование однорастворного метода при инъецировании грунтов в случае ликвидации аварийного состояния зданий зависит от уровня влажности его основания.

Газовая силикатизация обычно применяется для грунтов с повышенной влажностью, но стоимость укрепления грунта инъектированием, в этом случае обойдется гораздо дороже. Отвердителем при газовой силикатизации выступает газ CO2.

Газовая силикатизация бывает двух видов: с предварительной и без предварительной обработки грунта углекислым газом.

Такой способ инъектирования дает возможность укреплять грунты различной степени влажности, с коэффициентом фильтрации 0,1-0,2 м/сутки.

До 90-хх г.г. прошлого века цементация грунтов применялась лишь для снижения фильтрационных характеристик пород, склонных к появлению трещин и заполнения карстовых и суффозионных пустот. А также, при устройстве фильтрационных завес, заполнении зарубного пространства и бурении глубоких скважин.

Сегодня метод нагнетания цементосодержащих растворов под давлением для усиления фундамента широко используется в строительстве.

Усиление грунта и фундамента инъектированием — популярный метод в различных отраслях строительства. Принцип метода цементации состоит в следующем: для усиления грунтов бурятся специальные скважины, в которые под давлением вводится раствор цемента. После затвердения, он придает прочность и водонепроницаемость грунту, делая его монолитным

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: